9.8时间序列模型
时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。它一般采用曲线拟合和参数估计方法(如非线性最小二乘法)进行。
时间序列模型种类
(1) ARMA模型
ARMA模型的全称是自回归移动平均(auto regression moving average)模型,它是目前最常用的拟合平稳序列的模型,它又可细分为AR模型(auto regression model)、MA模型(moving average model)和ARMA模型(auto regression moving average model)三大类。
(2) ARIMA模型
ARIMA模型又称自回归求和移动平均模型,当时间序列本身不是平稳的时候,如果它的增量,即的一次差分,稳定在零点附近,可以将看成是平稳序列。在实际的问题中,所遇到的多数非平稳序列可以通过一次或多次差分后成为平稳时间序列,则可以建立模型。
这说明任何非平稳序列只要通过适当阶数的差分运算实现差分后平稳,就可以对差分后序列进行ARIMA模型拟合了。
最后修改: 2023年04月20日 星期四 10:42